skka3134

skka3134

email
telegram

机器学习和量化投资:4.构建lstm

1. 选择使用 cpu 还是 gpu 进行训练

if torch.cuda.is_available():
	device = torch.device("cuda")
else:
	device = torch.device("cpu")

2. 搭建 lstm 模型

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_stacked_layers,output_size):
        super().__init__() #初始化父类中的构造方法
        self.hidden_size = hidden_size
        self.num_stacked_layers = num_stacked_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_stacked_layers, batch_first=True)#构造lstm模型
        self.fc = nn.Linear(hidden_size,output_size) #全连接层
    #前向传播
    def forward(self, x):
        batch_size = x.size(0)
        #初始化隐藏层状态
        h0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
        c0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
        out, _ = self.lstm(x, (h0, c0)) #分离隐藏状态,以免梯度爆炸
        out = self.fc(out[:, -1, :]) #只要最后一层隐层状态
        return out 

#初始化lstm模型
input_size=1 #输入维度,close
hidden_size=4 #隐藏层维度
num_stacked_layers=1  #lstm层数
output_size=1 #输出维度,close
model = LSTM(input_size,hidden_size,num_stacked_layers,output_size)
# model.to(device)

参数设置

#定义学习率
learning_rate = 0.001
#定义损失函数
loss_function = nn.MSELoss() #nn.CrossEntropyLoss常用于解决二分类问题,nn.NLLLoss常用于图像识别
#定义优化器
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) #关于优化算法的选择https://blog.csdn.net/S20144144/article/details/103417502

2. 训练

def train_one_epoch():
    model.train(True)
    print(f'Epoch: {epoch + 1}')
    running_loss = 0.0
    
    for batch_index, batch in enumerate(train_loader):
        x_batch, y_batch = batch[0].to(device), batch[1].to(device)

        output = model(x_batch)#前向传播
        loss = loss_function(output, y_batch)#计算损失
        running_loss += loss.item()
        optimizer.zero_grad() #梯度会一直累加,清零梯度。
        loss.backward() #反向传播
        optimizer.step() #更新参数

        if batch_index % 100 == 99:  # print every 100 batches
            avg_loss_across_batches = running_loss / 100
            print('Batch {0}, Loss: {1:.3f}'.format(batch_index+1,avg_loss_across_batches))
            running_loss = 0.0
    print()

3. 验证

def validate_one_epoch():
    model.train(False)
    running_loss = 0.0
    #迭代测试集,获取数据,预测
    for batch_index, batch in enumerate(test_loader):
        x_batch, y_batch = batch[0].to(device), batch[1].to(device)
        with torch.no_grad():
            output = model(x_batch)
            loss = loss_function(output, y_batch)
            running_loss += loss.item()
    #计算
    avg_loss_across_batches = running_loss / len(test_loader)
    #打印
    print('Val Loss: {0:.3f}'.format(avg_loss_across_batches))

4. 定义训练次数

num_epochs = 10
for epoch in range(num_epochs):
    train_one_epoch()
    validate_one_epoch()
with torch.no_grad():
    predicted = model(X_train.to(device)).to('cpu').numpy()

image
5. 可视化

plt.plot(y_train, label='Actual Close')
plt.plot(predicted, label='Predicted Close')
plt.xlabel('Day')
plt.ylabel('Close')
plt.legend()
plt.show()

image

加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。