1. 选择使用 cpu 还是 gpu 进行训练
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
2. 搭建 lstm 模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_stacked_layers,output_size):
super().__init__() #初始化父类中的构造方法
self.hidden_size = hidden_size
self.num_stacked_layers = num_stacked_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_stacked_layers, batch_first=True)#构造lstm模型
self.fc = nn.Linear(hidden_size,output_size) #全连接层
#前向传播
def forward(self, x):
batch_size = x.size(0)
#初始化隐藏层状态
h0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
c0 = torch.zeros(self.num_stacked_layers, batch_size, self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0)) #分离隐藏状态,以免梯度爆炸
out = self.fc(out[:, -1, :]) #只要最后一层隐层状态
return out
#初始化lstm模型
input_size=1 #输入维度,close
hidden_size=4 #隐藏层维度
num_stacked_layers=1 #lstm层数
output_size=1 #输出维度,close
model = LSTM(input_size,hidden_size,num_stacked_layers,output_size)
# model.to(device)
参数设置
#定义学习率
learning_rate = 0.001
#定义损失函数
loss_function = nn.MSELoss() #nn.CrossEntropyLoss常用于解决二分类问题,nn.NLLLoss常用于图像识别
#定义优化器
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) #关于优化算法的选择https://blog.csdn.net/S20144144/article/details/103417502
2. 训练
def train_one_epoch():
model.train(True)
print(f'Epoch: {epoch + 1}')
running_loss = 0.0
for batch_index, batch in enumerate(train_loader):
x_batch, y_batch = batch[0].to(device), batch[1].to(device)
output = model(x_batch)#前向传播
loss = loss_function(output, y_batch)#计算损失
running_loss += loss.item()
optimizer.zero_grad() #梯度会一直累加,清零梯度。
loss.backward() #反向传播
optimizer.step() #更新参数
if batch_index % 100 == 99: # print every 100 batches
avg_loss_across_batches = running_loss / 100
print('Batch {0}, Loss: {1:.3f}'.format(batch_index+1,avg_loss_across_batches))
running_loss = 0.0
print()
3. 验证
def validate_one_epoch():
model.train(False)
running_loss = 0.0
#迭代测试集,获取数据,预测
for batch_index, batch in enumerate(test_loader):
x_batch, y_batch = batch[0].to(device), batch[1].to(device)
with torch.no_grad():
output = model(x_batch)
loss = loss_function(output, y_batch)
running_loss += loss.item()
#计算
avg_loss_across_batches = running_loss / len(test_loader)
#打印
print('Val Loss: {0:.3f}'.format(avg_loss_across_batches))
4. 定义训练次数
num_epochs = 10
for epoch in range(num_epochs):
train_one_epoch()
validate_one_epoch()
with torch.no_grad():
predicted = model(X_train.to(device)).to('cpu').numpy()
5. 可视化
plt.plot(y_train, label='Actual Close')
plt.plot(predicted, label='Predicted Close')
plt.xlabel('Day')
plt.ylabel('Close')
plt.legend()
plt.show()